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PARALLEL ILU ORDERING AND CONVERGENCE RELATIONSHIPS: NUMERICAL 

EXPERIMENTS 

DAVID HYSOM AND ALEX POTHEN* 

Abstract. We recently developed a parallel algorithm for computing ILU preconditioners, which was 

presented at Super Computing 1999. The algorithm has been shown to be highly scalable, in terms of 

execution time required for preconditioner factorization and application, for problems with up to 20 million 

unknowns running on up to 216 processors. However, since the algorithm reorders the matrix, and it is widely 

known that ordering can significantly affect convergence, questions were raised concerning the quality of the 

computed preconditioners. In this report we present experimental results demonstrating that the orderings 

imposed by the algorithm do not significantly degrade convergence, as long as the number of unknowns per 

subdomain is not too small. We report on two model problems, Poisson's equation, and a special case of the 

convection-diffusion equation, which other researchers have used for ordering and convergence studies. We 

show that convergence behavior is fairly fiat as long as subdomains contain at least 512 nodes. 
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1. Introduction. The Parallel ILU algorithm, presented at SC99 [5] 1, attempts to maximize par- 

allelism through use of a two-phase ordering technique coupled with a Subdomain Graph Constraint To 

describe the ordering and constraint we require a few concepts from graph theory. Given an n x n matrix A 

partitioned into subdomains, the graph G(A) = (V,E) has vertex set V, which contains a node i for every 

row in the matrix, and edge set E, which contains a directed edge (?', j) for every nonzero matrix entry 

ay. Node i is called an interior node, and the associated matrix row an interior row, if, for every edge 

(i,j) € E, 1 < j < n, nodes i and j are in the same subdomain. Node i is called a boundary node, and the 

associated matrix row a boundary row, if there is at least one edge (i, j) G E such that nodes i and j are 

in different subdomains. A Subdomain Graph S(A) — (Vs,ES) is a reduced graph of A, such that nodes in 

Vs correspond to subdomains, and Es contains an edge (r, s) if subdomains r and s are connected by one 

or more edges in G(A). An incomplete factorization of A is denoted as F = L + U — I, where LU PS A. 

During the first ordering phase Parallel ILU constructs and orders the Subdomain Graph, S(A). Since 

we stipulate that nodes within each subdomain be numbered contiguously, this ordering imposes a partial 

ordering on G(A), i.e., if node i is ordered before node j in S(A), then all nodes in subdomain i are ordered 

before all nodes in subdomain j in G{A). 

During the second ordering phase nodes are ordered within individual subdomains. The ordering re- 

quires that all interior nodes be ordered before the boundary nodes in each subdomain. However, within a 

subdomain the relative ordering of interior nodes (and similarly boundary nodes) is not specified. A subdo- 
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main's interior nodes may be ordered, for example, using reverse Cuthill-McKee (RCM), Nested Dissection, 

etc. Further, different interior orderings can be used in different subdomains. 

During the next step of the algorithm the matrix is factored using a row-oriented ILU algorithm, sub- 

ject to the Subdomain Graph Constraint, which decrees that the Subdomain Graph of A and the factor, 

F = L + Ü - I, be identical, i.e, S(A) = G{A). This constraint is trivially fulfilled for ILU(O) factorization. 

When additional fill is permitted, however, it is possible for the subdomain graphs S(A) and S(F) to differ. 

The Subdomain Graph Constraint can result in the deletion and/or numerical alteration of entries that 

would otherwise be included in F. 

Parallel ILU's factorization and solve stages have been shown to be highly scalable [5]. However, three 

questions concerning convergence behavior have been raised. 

1. How do the orderings imposed by Parallel ILU affect convergence? 

2. How does the Subdomain Graph Constraint affect convergence? 

3. How does convergence for Parallel ILU compare with that for Block Jacobi ILU? (By Block Jacobi 

ILU, we refer to ILU factorization of diagonally blocked matrices.) 

The first question is important since previous studies [2, 3] have shown that matrix ordering can signifi- 

cantly affect convergence. The second question is prompted by the intuition that "throwing out" entries in F 

will likely weaken the preconditioner. The final question is important since Parallel ILU has communication 

costs absent from Block Jacobi ILU; hence, if Parallel ILU does not require significantly fewer iterations 

than Block Jacobi ILU, the communication overhead may result in Parallel ILU being costlier in terms of 

total execution time. 

We investigated these questions by conducting numerical experiments using three ILU variants: Parallel 

ILU(A;) with and without the Subdomain Graph Constraint, and Block Jacobi ILU(fc), We refer to these 

methods respectively as Constrained PILU(A:), Unconstrained PILU(fc), and BJILU(fc). 

The experiments used two model problems, Poisson's equation, and a convection-diffusion equation. 

Our scenario is that the linear systems that must be solved, of which these are representative if simplistic 

examples, arise during execution of Grand Challenge application codes, and there is a one-to-one mapping 

between subdomains and processors. Results indicate that, for realistic numbers of unknowns per subdomain 

(between 512 and 32K for 3D problems) the following behaviors are typical. 

1. The orderings imposed by Parallel ILU affect convergence only to a relatively small degree. 

2. Iteration counts are quite close for Constrained and Unconstrained PILU(fc), indicating that the 

Subdomain Graph Constraint does not significantly affect convergence. 

3. Constrained PILU(fc) converges in significantly fewer iterations than does BJILU(fc). 

Section 3 contains extended results, including discussion of exceptional and 2D cases. 

2. Algorithms. In this section we discuss details of the Parallel ILU algorithm, and summarize the 

underlying theory. Figure 2.1 shows Parallel ILU in a form suitable for message passing computational 

environments. Figure 2.2 shows the equivalent serial formulation that was used for this study {equivalent 

here means the factors computed by both algorithms are identical). Although not all terminology and 

concepts have yet been fully defined or explained, we think it useful to present the algorithms at the outset, 

for the reader's ready reference. 

In the following subsections we discuss three notions fundamental to Parallel ILU's design: the global 

matrix ordering phase, which is based on ordering the subdomain graph; the local matrix ordering phase, 

which arises from application of the Fill Path Theorem; and the Subdomain Graph Constraint, which is 

based on a recent extension of the Fill Path Theorem.  Each of these notions maps directly to one of the 



Input: A partitioned, distributed matrix. 

1. Form subdomain graph and order vertices to reduce directed path lengths, 

using vertex coloring. 

2. On each processor, locally order interior nodes, then order boundary nodes. 

3. Factor interior rows. Processors having no lower-ordered neighbors in the 

subdomain graph also factor boundary rows, and go to step 6. 

4. Receive row structure and values of boundary rows from lower-ordered 

neighbors in the subdomain graph. 

5. Factor boundary rows. 

6. Send boundary row structures and values to higher-ordered neighbors in 

the subdomain graph. 

FIG. 2.1. Parallel ILU 

Input: A partitioned matrix. 

1. Form subdomain graph S(A) and order vertices to reduce directed path 

lengths using vertex coloring. 

2. For each subdomain, order interior nodes, then order boundary nodes. 

3. Perform ILU factorization subject to the constraint that fill entry /y is 

disallowed if node i is in subdomain r, node j is in subdomain s, and edge 

(r, s) is not in the edgeset of S(A). 

FIG. 2.2. Equivalent Sequential Version of PILU 

three steps in the serial formulation (Figure 2.2). Finally, we present a scalability analysis. 

2.1. Subdomain Graphs and PILU's Global Ordering Phase. The global ordering phase, which 

is the first step in PILU, is intended to reduce directed path lengths in the subdomain graph. Since nodes 

in each subdomain are ordered contiguously, S(A) is considered to be a directed graph, with edges oriented 

from lower to higher numbered vertices. Consequently, saying "subdomain r is ordered before subdomain s" 

is equivalent to saying "all nodes in subdomain r are ordered, then all nodes in subdomain s are ordered." 

We assume that factorization is row-oriented and upward-looking. Accordingly, the initial matrix A is 

mapped to subdomains (i.e., processors) by rows. Edges in S(A) thus indicate data dependencies that, in 

parallel environments, become communication dependencies. Hence, ordering S(A) to reduce directed path 

lengths has the effect of decreasing serial communication bottlenecks. 

It is natural to ask, "how much parallelism can be gained through subdomain graph reordering?" While 

this is in general very difficult to answer, we can gain some intuition through analysis of simplified model 

problems. Consider a matrix arising from a 2nd order partial differential equation (PDE) that has been 

discretized on a regularly structured 2D grid using a standard 5-point stencil. Assume the grid has been 

partitioned into m square subgrids (m being a perfect square). In the worst case, the associated subdomain 

graph, which itself has the appearance of a regular 2D grid, can have a dependency path of length m — 1. 

However, regular 2D and 3D grids can easily be divided into two independent sets, commonly referred to 

as red-black coloring. If this is done and all red nodes are numbered, then all black nodes numbered, the 

longest dependency path in S will be reduced in length from m — 1 to 1. 

In general, our approach is expected to work well with any problem that can be partitioned such that 



the resulting subdomain graph has a small chromatic number. 

2.2. The Fill Path Theorem and PILU's Local Ordering Phase. The local ordering phase, 

PILU's second step, is intended to increase the amount of communication independent processing. This step 

results from application of the Fill Path Theorem [6]. Given the graph of an initial matrix A, the theorem 

provides a static characterization of where fill entries arise during factorization. The characterization is 

static in that fill is completely described by the structure of the graph G(A); no information from the factor 

is required. 

DEFINITION 2.1. A fill path is a path joining two vertices i and j, all of whose interior vertices are 

numbered lower than the minimum of the numbers of i and j. 2 

THEOREM 2.2. Let F = L + U - I be the complete factor of A. Then f{j ^ 0 if and only if there exists 

a fill path joining i and j in the graph G(A). 

Now consider the graph of a partitioned matrix, G(A). If two interior nodes belonging to separate 

subdomains were connected by a fill path and the corresponding fill entry were permitted in F, the interior 

nodes would be transformed into boundary nodes in G(F). This is undesirable for parallelism, for reasons 

that will shortly become apparent. If each subdomain's boundary nodes are ordered after its interior nodes, 

this situation cannot arise: boundary nodes in G(A) remain boundary nodes in G(F), and interior nodes in 

G(A) remain interior nodes in G(F). This is so since any path joining interior nodes that are assigned to 

separate subdomains must include at least two boundary nodes; since each boundary node will be numbered 

higher than (at least one of) the path's end points, no such fill path can exist. 

Since, for upward-looking factorization, matrix rows are only updated from lower ordered rows, the local 

ordering step, in addition to preserving interior/boundary node ratios, ensures that a subdomain's interior 

rows can be factored independently of row updates from any other subdomain. Therefore, if all subdomains 

have relatively large interior/boundary node ratios and contain approximately equal numbers of nodes we 

expect PILU to exhibit a high degree of parallelism. 

2.3. The Extended Fill Path Theorem and PILU's Subdomain Graph Constraint. PILU's 

Subdomain Graph Constraint arises from a recently developed theorem that extends Theorem 2.2 to provide 

static characterizations of fill for incomplete, structurally based factorizations (ILU(fc)). Before introducing 

the theorem, we note that the "classic" ILU(fc) algorithm operates by mimicking numeric factorization. 

Classic ILU(&) initially assigns all entries in A the level zero. New entries that arise during factorization are 

assigned a level based on the levels of the causative entries, according to the rule: 

level(a,ij) =   min {level(aih) + level(a,hj) + 1},    ai/i,a/,,- € A. 

The Extended Fill Path Theorem informs us of an intimate relationship between fill entries in Classic 

ILU(fc) factors and path lengths in graphs. 

THEOREM 2.3. Let F = L + U — I be an incomplete factor of A, and fij a permitted entry in F. Then 

fij is a level k entry if and only if there exists a shortest fill path of length k + 1 that joins i and j in G(A). 

Theorem 2.3 has an intuitively simple geometric interpretation. Given an initial node i in G(A), construct 

a topological "sphere" containing all nodes that are connected to i by a path containing k +1 or fewer edges. 

Then a fill entry fa can only be permitted in an ILU{k) factor if j is within the sphere. 

2 The reader has doubtless noted that interior is used in a different sense here than previously. We trust it will be obvious 
from the context when interior is used to refer to nodes in paths, and when to nodes in subdomains. 
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FIG. 2.3. Illustration of the Subdomain Graph Constraint's action. The Top fiywe shows level 1 and 2 fill edges that cross 
subdomain boundaries; for clarity, all other fill is omitted. The dotted edges would alter the subdomain graph, and hence are 
prohibited. Bottom figure shows (left) that the subdomain graph would have a directed path of length two if the edges were not 
prohibited and (right) when the edges are discarded, the longest directed path has length one. 

Turning our attention to the Subdomain Graph Constraint we notice that, as a result of fill entries that 

arise during factorization, subdomain graph S(F) can contain edges not present in subdomain graph S(A). 

This is illustrated in Figure 2.3. The additional edges can have the effect of increasing dependency path 

lengths in S(F). The Subdomain Graph Constraint—which states that fill entry fa is disallowed if node i is 

in subdomain r, node j is in subdomain s, and edge {r, s} is not in the edgeset of S(A)—ensures that S(F) 

remains identical to S(A). This is particularly important since the serial communication dependencies that 

correspond to directed path lengths occur in both factorization and triangular solve phases. 

By applying Theorem 2.3, we can gain an intuitive understanding of the number of fill entries that 

may be discarded on account of the Subdomain Graph Constraint. Referring again to Figure 2.3, we see 

that prohibited edges only arise near points where two subdomains that are not neighbors in S(A) "touch 

corners." Theorem 2.3 tells us that these edges can only arise within a radius of k + 1 edges about such 

points. Hence, if subdomains contain relatively large numbers of nodes and k is relatively small, we expect 

the Subdomain Graph Constraint will prohibit only a small number of fill edges. 

Several researchers have developed parallel ILU algorithms that have similarities to ours; the earliest 

such work of which we are aware is credited to Saad [7]. His Distributed ILU(0) Factorization (Section 

12.6.1) is similar to ours in that interior nodes are ordered before boundary nodes, and a coloring of the 

subdomain graph is used to enhance concurrency in eliminating the boundary nodes. Our work, although 

developed independently, in effect extends Saad's ideas to show how fill effects can be included. Additionally, 



we provide an analysis to show that this approach leaads to parallel algorithmisc scalability. We also report 

experimental results showing that the number of iterations for model problems is almost entirely independent 

of the number of subdomains. 

2.4. Scalability Analysis. In this section we present a simplified theoretical analysis of algorithmic 

behavior for matrices arising from PDEs discretized on 3D grids with seven-point stencils. We assume the 

grid has been block-partitioned, with each subdomain consisting of a cubic subgrid of dimension ex ex. c. 

We also assume the subdomain grid has dimensions p1/3 x p1/3 x p1/3 so there are p processors total. There 

are thus N — c3p total nodes in the grid, and each subdomain contains c3 = — nodes, of which at most 

6c2 = 6(—)2/3 are boundary nodes. 

If subdomain interior nodes are locally numbered in natural order and k <C c, it can be shown that 

matrix rows in the factor asymptotically have k2 (strict) upper and lower triangular entries, and the cost 

for factoring a row is ki. For red-black coloring of S(A), with red subdomains numbered before black 

subdomains, Parallel ILU simplifies to the following three stages, which are assumed non-overlapping. 

1. Red processors eliminate all nodes; black processors eliminate interior nodes. 

2. Red processors send boundary-row structure and values to black processors. 

3. Black processors eliminate boundary nodes. 

The cost of the first stage is bounded by the complexity of factoring all rows in a subdomain. This is 

fc4c3 = &4^. 
p 

The cost for the second stage is the cost of sending structural and numerical values from the upper- 

triangular portions of boundary rows to neighboring processors. Assuming a standard, non-contentious 

communication model wherein a and ß represent message startup and cost-per-word respectively, and with 

time for each operation normalized to unity, the cost for this step is bounded by 6(a + k2ßc2) — 6(a + 

k2ß(f)2/*). 
For the third step, the cost of factoring a boundary row can be shown asymptotically identical to the 

cost of factoring an interior row, so the cost here is 6k4c2 = 6k4 (^)2/3. 

Speedup can then be expressed as 

k4N 
speedup = 

k4f + 6(a + k2ß(f )2/3) + 6&4(^)2/3 ' 

The numerator represents cost for uni-processor (sequential) execution, and the three denominator terms 

represent the costs for the corresponding stages of the simplified algorithm for parallel execution. 

3. Results. We report on model problems identical to those used by Benzi et.   al, in "Numerical 

Experiments with Parallel Orderings for ILU Preconditioned." [2]. 

Problem 1. Poissons's equation, 

Au = g. 

Problem 2. Convection-diffusion equation with convection in the xy plane, 

9     XV d     -xv -eAu + -^exyu + —e xyu = g. 
ox ay 

Homogeneous boundary conditions were used for both problems. Derivative terms were discretized on the 

unit square or cube, using central differencing (5-point and 7-point stencils) on regularly spaced nx xny x nz 



grids (nz = 1 for 2D). Problem 2 was run using coefficients e — 1/100 and e = 1/500. The right-hand sides 

of the resulting systems, Ax = b, were artificially generated as b — Ae, where e is the all-ones vector. 

Both problems were solved using Krylov subspace methods as implemented in the PETSc software 

library [1]. Problem 1 was solved using Conjugate Gradient [4], and Problem 2 was solved using Bi- 

CGSTAB [8]. PETSc's default convergence criteria was used, 105 reduction in the residual of the pre- 

conditioned system. We used our own codes for problem generation, partitioning, ordering, and symbolic 

factorization. 

Since we are here concerned with convergence behavior rather than parallel efficiency, scalability, etc., 

the experiments were performed in a sequential environment. 

3.1. Fill Count Comparisons. Intuitively one expects, especially for diagonally dominant matrices, 

that larger amounts of fill in preconditioners will reduce the number of iterations required for convergence. As 

explained in Section 2, the Subdomain Graph Constraint implies that fill edges arising during factorization 

will be dropped if they join subdomains that are not neighbors in the Subdomain Graph, S(A). Block Jacobi 

ILU(fc) can be considered as resulting from a more severe constraint, one that requires the dropping of all 

edges that join subdomains. Both constraints have the effect of reducing permitted fill. 

For constant-size problems the number of dropped edges (or, contrariwise, the amount of permitted fill) 

is a function of three components: the factorization level, k; the subdomain size(s); and the discretization 

stencil. While the numerics of a particular PDE influence convergence, they do not affect fill counts. There- 

fore, our first set of results consists of fill count comparisons for problems discretized on a 64 x 64 x 64 grid 

using a standard 7-point stencil. 

Table 4.1 shows fill count comparisons between Unconstrained PILU(fc), Constrained PILU(fc), and Block 

Jacobi ILU(fc), for various partitionings and factorization levels. The data shows that more fill is discarded as 

the factorization level increases, and as subdomain size (the number of nodes in each subdomain) decreases. 

These two effects hold for both Constrained PILU(/s) and Block Jacobi ILU(fe), but are more pronounced 

for the latter. For example, less than 5% of fill is discarded from Unconstrained PILU(ft) factors when 

subdomains contain upwards of 512 nodes, but up to 42% is discarded from Block Jacobi factors. Thus, one 

might tentatively speculate that, for a given subdomain size and level, PILU(fe) will provide more effective 

preconditioning than BJILU(Ai). 

Table 4.2 shows similar data for problems discretized on a 256 x 256 grid using a standard 5-point stencil. 

Note that, for both 2D and 3D problems, when there is a single subdomain the factors returned by the three 

algorithms are identical. 

3.2. Convergence Studies. Tables 4.3 and 4.4 show iterations required for convergence for various 

partitionings and fill levels. The raw data in these tables can be interpreted in various ways; we begin by 

discussing two we think particularly significant. 

First, by scanning vertically one can see how changing the partitioning, hence, matrix ordering, affects 

convergence. When there is a single subdomain there is no global or local reordering, and our iteration counts 

are in close agreement with those reported by Benzi, et. al., [2] for natural ordering (NO). Our data shows 

that, unless subdomain sizes are small (64 or fewer nodes) and the factorization level high, PILU's reordering 

does not significantly influence convergence. For example (see Table 4.3), Poisson's equation (Problem 1) 

preconditioned with a level two factorization and a single subdomain required 24 iterations. Preconditioning 

with the same level, Constrained PILU(fc), and 512 subdomains necessitated only two additional iterations. 

We conclude that, for subdomain sizes that are likely to arise in real-world applications and systems similar 

to our model problems, the reorderings imposed by PILU will likely have little effect on convergence. 



For an intuitive understanding of convergence behavior, note that, if one performs Parallel ILU on a 

matrix where each node is considered an entire subdomain, the imposed ordering degenerates to a red-black 

ordering on G(A). Since at the other extreme a single subdomain corresponds to a natural ordering on 

G(A), we can consider that orderings imposed by Parallel ILU lie on a continuum bounded by Natural and 

Red-Black. 

Second, scanning the data horizontally permits evaluation of the Subdomain Graph Constraint's effects. 

Again, unless subdomains are small and the factorization level high, Constrained and Unconstrained PILU(fc) 

show very similar behavior. Consider for example Poisson's equation (Problem 1) preconditioned with a level 

two factorization and 512 subdomains (again, see Table 4.3). Solution with Unconstrained PILU(fc) required 

25 iterations while Constrained PILU(fc) required 26. 

There are two approaches for comparing Parallel ILU(fc) and Block Jacobi ILU(fc) preconditioning. 

Horizontal scanning of the data in the tables permits comparison for a given partitioning and factorization 

level. Doing so for Table 4.3 reveals that, with a single exception (Problem 2, e = 1/500, ILU(O) with 

32,768 nodes per subdomain), PILU(fc) preconditioning is more effective than BJILU(fc) for all 3D trials. 

The results from the 2D runs, Table 4.4, are less consistent. While PILU(fc) is more effective than BJILU(/c) 

for Poisson's equation, BJILU(&) is sometimes more effective in the convection-diffusion problems. 

The second approach is to examine iteration counts as a function of preconditioner size. This comparison 

involves data from both the fill and iteration tables, and is best illustrated graphically. Plots of this data 

appear in Figures 4.1 through 4.6. As in the first approach, PILU(fc) preconditioning is almost always more 

effective than BJILU(fc) for 3D problems, but only sometimes so for 2D. 

4. Conclusions. The results presented herein indicate that, at least for simple problems, if the number 

of nodes per subdomain is not too small or the factorization level too high, the orderings imposed by Parallel 

ILU(fc) have little effect on convergence. These results are for systems wherein subdomain interior nodes are 

naturally ordered; experiments with other interior orderings have yet to be conducted. The results also show 

that fill discarded on account of the Subdomain Graph Constraint has little adverse effect on convergence. 

Finally, the data suggests that Parallel ILU(fc) can provide considerably stronger preconditioning than Block 

Jacobi ILU(&) for 3D problems. 
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FIG. 4.2. Convergence comparison as a function of preconditioner size for convection-diffusion problem, e = 1/100 on 

64 X 64 X 64 grid. Data points are for levels 0 through 4- Data points for Constrained and Unconstrained PILU(k) are 

indistinguishable in the second and third graphs. 
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TABLE 4.1 

Fill comparisons for 64 X 64 x 64 grid. The columns headed "nzF/nzA " show the ratio of the number of nonzeros in the 
preconditioner to the number of nonzeros in the original problem, and are indicative of storage requirements. The columns 
headed "constraint effects" present another view of the same data: here, the percentage of nonzeros in the Constrained PILU(k) 
and Block Jacobi ILU(k) factors are shown relative to that for Unconstrained PILU(k). These columns are indicative of the 

amount of fill that is dropped due to subdomain graph constraints. 

nodes per subdomain nz F/nzA constraint effects (%) 

subdomain count level uncon const bj const bj 

262,144 1 0 1.00 1.00 1.00 100.00 100.00 

1 1.84 1.84 1.84 100.00 100.00 

2 3.22 3.22 3.22 100.00 100.00 

3 5.96 5.96 5.96 100.00 100.00 

4 9.73 9.73 9.73 100.00 100.00 

32,768 8 0 1.00 1.00 0.99 100.00 98.64 

1 1.87 1.87 1.80 99.99 96.53 

2 3.36 3.35 3.12 99.96 92.91 

3 6.32 6.32 5.70 99.92 90.13 

4 10.50 10.49 9.19 99.89 87.56 

4,096 64 0 1.00 1.00 0.96 100.00 95.93 

1 1.89 1.89 1.72 99.90 91.24 

2 3.45 3.44 2.91 99.62 84.36 

3 6.51 6.47 5.19 99.34 79.72 

4 10.81 10.70 8.17 99.06 75.61 

512 512 0 1.00 1.00 0.90 100.00 90.50 

1 1.92 1.91 1.57 99.46 81.62 

2 3.59 3.52 2.53 98.05 70.35 

3 6.72 6.50 4.27 96.62 63.47 

4 10.96 10.43 6.32 95.20 57.69 

64 4,096 0 1.00 1.00 0.80 100.00 79.64 

1 1.97 1.92 1.29 97.58 65.15 

2 3.73 3.42 1.86 91.67 49.79 

3 6.60 5.64 2.71 85.37 41.04 

4 10.01 7.76 3.35 77.56 33.45 

8 32,768 0 1.00 1.00 0.58 100.00 57.92 

1 2.05 1.85 0.80 90.07 38.81 

2 3.98 2.55 0.87 64.14 21.84 

3 6.15 2.89 0.90 46.95 14.72 

4 7.40 2.90 0.90 39.26 12.23 
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TABLE 4.2 
Fill comparisons for 256 X 256 grid.   The columns headed "nzF/nzA" show preconditioner size relative to problem size, 

and are indicative of storage requirements.   The columns headed "constraint effects" present another view of the same data: 

here, the percentage of nonzeros in the Constrained PIL U(k) and Block Jacobi IL U(k) factors are shown relative to that for 

Unconstrained PILU(k). These columns are indicative of the amount of fill that is dropped due to subdomain graph constraints. 

nodes per subdomain nz F/nzA constraint effects (%) 

subdomain count level uncon const bj const bj 

65,536 1 0 1.00 1.00 1.00 100.00 100.00 

1 1.40 1.40 1.40 100.00 100.00 

2 1.79 1.79 1.79 100.00 100.00 

3 2.59 2.59 2.59 100.00 100.00 

4 3.37 3.37 3.37 100.00 100.00 

5 4.16 4.16 4.16 100.00 100.00 

6 4.94 4.94 4.94 100.00 100.00 

16,384 4 0 1.00 1.00 1.00 100.00 99.69 

1 1.40 1.40 1.39 100.00 99.11 

2 1.82 1.82 1.78 100.00 98.13 

3 2.63 2.63 2.56 100.00 97.42 

4 3.45 3.45 3.34 100.00 96.71 

5 4.28 4.28 4.11 99.99 95.99 

6 5.11 5.11 4.87 99.99 95.28 

1,024 64 0 1.00 1.00 0.98 100.00 97.81 

1 1.42 1.42 1.35 99.98 95.24 

2 1.88 1.88 1.72 99.92 91.46 

3 2.73 2.73 2.44 99.87 89.08 

4 3.61 3.60 3.13 99.83 86.70 

5 4.50 4.49 3.80 99.78 84.39 

6 5.41 5.39 4.44 99.74 82.14 

64 1,024 0 1.00 1.00 0.90 100.00 90.28 

1 1.49 1.48 1.21 99.60 81.46 

2 2.08 2.05 1.47 98.59 70.74 

3 3.02 2.96 1.96 97.76 64.70 

4 3.97 3.85 2.35 96.96 59.28 

5 4.89 4.70 2.66 96.09 54.38 

6 5.77 5.49 2.88 95.15 49.90 

16 4,096 0 1.00 1.00 0.80 100.00 80.25 

1 1.55 1.52 1.03 98.43 66.43 

2 2.24 2.12 1.18 94.58 52.53 

3 3.06 2.78 1.40 90.87 45.87 

4 3.74 3.14 1.48 84.07 39.60 

5 4.26 3.30 1.48 77.48 34.72 

6 4.64 3.38 1.48 72.76 31.89 
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TABLE 4.3 

Iteration comparisons for 64 x 64 x 64 grid.  The starred entries (*) indicate that, since there is a single subdomain, the 

factor is structurally and numerically identical to Unconstrained PILU(k).   Dashed entries (-) indicate the solutions either 

diverged or failed to converge after 200 iterations. 

nodes per subdomain Problem 1 Problem 2, e = 1/100 Problem 2, e = 1/500 

subdomain count level uncon const bj uncon const bj uncon const bj 

262,144 1 0 43 * * 20    * * 19    * * 

1 29 * * 16    * * 16    * * 

2 24 * * 13    * * 8    * * 

3 19 * * 11    * * 8    * * 

4 16 * * 9    * * 6    * * 

32,768 8 0 45 45 53 21   21 22 32   32 26 

1 32 33 41 17   17 18 14   14 19 

2 27 29 37 15   15 18 11   11 17 

3 22 24 33 12   12 15 8    8 13 

4 19 21 29 11   11 14 7    7 13 

4,096 64 0 43 43 55 23   23 24 33   33 49 

1 31 32 45 18   18 19 15   15 21 

2 25 27 41 15   15 20 12   11 22 

3 20 23 39 13   13 18 9    9 16 

4 17 20 36 11   11 16 8    8 19 

512 512 0 41 41 56 27   27 30 28   28 67 

1 29 31 48 19   20 26 18   16 29 

2 25 26 46 17   17 22 11   12 36 

3 21 23 44 13   14 22 11   11 31 

4 18 21 43 11   14 20 9   12 34 

64 4,096 0 43 43 64 32   32 41 28   28 - 

1 30 33 60 21   23 36 17   18 124 

2 26 30 58 17   20 37 13   15 115 

3 21 28 58 14   18 37 12   17 127 

4 17 28 58 11   18 35 10   17 132 

8 32,768 0 46 46 83 40   40 74 43   43 - 

1 32 41 82 27   36 74 24   46 - 

2 25 40 82 15   37 70 11   45 - 

3 19 40 82 10   36 74 5   44 - 

4 16 40 82 8   36 74 4   45 - 
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TABLE 4.4 

Iteration comparisons for 256 X 256 grid.   The starred entries (*) indicate that, since there is a single subdomain, the 

factor is structurally and numerically identical to Unconstrained PILU(k). Dashed entries (-) indicate the solution diverged. 

nodes per subdomain Problem 1 Problem 2, e — 1/100 Problem 2, e — 1/500 

subdomain count level uncon const bj uncon const bj uncon const bj 

65,536 1 0 109 * * 94    * * 9 * * 

1 67 * * 55    * * 11 * * 

2 55 * * 44    * * 11 * * 

3 40 * * 30    * * 8 * * 

4 34 * * 22    * * 6 * * 

5 29 * * 18    * * 6 * * 

6 24 * * 14    * * 5 * * 

16,384 4 0 110 110 125 95   95 95 16 16 13 

1 69 69 85 56   56 56 14 14 13 

2 56 56 74 46   46 46 14 14 12 

3 47 47 60 31   31 31 11 11 11 

4 39 39 54 24   24 24 9 9 9 

5 33 35 54 19   19 19 8 8 8 

6 29 31 50 16   16 16 7 7 8 

1,024 64 0 112 112 132 97   97 97 24 24 20 

1 72 73 98 57   57 57 20 21 19 

2 59 60 89 49   50 49 19 19 19 

3 46 47 78 35   35 35 17 17 18 

4 38 40 73 27   27 27 16 16 17 

5 33 35 71 23 23 15 15 17 

6 31 34 70 20   20 20 14 14 15 

64 1,024 0 120 120 158 111   111 111 59 59 71 

1 81 85 137 69   72 69 49 51 64 

2 66 73 132 58   60 58 41 44 63 

3 52 63 128 45   51 45 37 39 - 

4 43 57 126 38   45 38 34 36 57 

5 37 54 127 32   43 32 33 36 61 

6 34 52 126 29   39 29 29 33 61 

16 4,096 0 130 130 193 - - - - - 

1 90 101 182 82   93 82 70 76 - 

2 67 88 179 77 - 49 62 - 

3 49 84 178 41   68 41 32 - 132 

4 40 84 177 30   68 30 21 62 129 

5 35 84 177 22   68 22 13 62 129 

1 6 29 84 177 17   68 17 7 62 129 

14 



512 nodes per subdomain, 512 subdomains 
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FIG. 4.3. Convergence comparison as a function of preconditioner size for convection-diffusion problem, e = 1/500 on 
64 X 64 X 64 grid. Data points are for levels 0 through 4- Data points for Constrained and Unconstrained PILU(k) are 

indistinguishable in the third graph. 
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64 nodes per subdomain, 1024 subdomains 
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FIG. 4.4.  Convergence as a function of preconditioner size, for Poisson's equation on 256 X 256 grid. Data points are for 

levels 0 through 7. 
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64 nodes per subdomain, 1024 subdomains 
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FIG. 4.5. Convergence comparison as a function of preconditioner size for convection-diffusion problem, e = 1/100 on 
256 x 256 grid. Data points are for levels 0 through 7 (some data points omitted due to convergence failure). Data points for 
Constrained and Unconstrained PILU(k) are nearly indistinguishable in the second and third graphs. 
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64 nodes per subdomain, 1024 subdomains 
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FIG. 4.6. Convergence comparison as a function of preconditioner size for convection-diffusion problem, e = 1/500 on 
256 x 256 grid. Data points are for levels 0 through 7. (some data points omitted due to convergence failure). Data points for 
Constrained and Unconstrained PILU(k) are nearly indistinguishable in the second and third graphs. 
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